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Phase synchronization and topological defects in inhomogeneous media
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The influence of topological defects on phase synchronization and phase coherence in two-dimensional
arrays of locally coupled, nonidentical, chaotic oscillators is investigated. The motion of topological defects
leads to a breakdown of phase synchronization in the vicinities of the defects; however, the system is much
more phase coherent as long as the coupling between the oscillators is strong enough to prohibit the continuous
dynamical creation and annihilation of defects. The generic occurrence of topological defects in two and higher
dimensions implies that the concept of phase synchronization has to be modified for these systems.
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The rich collective behavior, including mutual entrai
ment and self-synchronization, seen in systems of coup
oscillators has been a stimulus for the long-standing inte
in these systems~see, for example, Refs.@1–3#, and refer-
ences therein!. Recently, attention has turned to the study
coupledchaoticoscillators and, in particular, to the phenom
enon of phase synchronization. Provided that the phase
be defined@4,5#, two coupled nonidentical chaotic oscillato
are said to be phase synchronized if their frequencies
locked@1,6#. This appears to be a general phenomenon an
has been observed in such diverse systems as electri
coupled neurons@7,8#, biomedical systems@9#, chemical sys-
tems@10#, and spatially extended ecological systems@11#, to
name only a few. Moreover, the potential role of phase s
chronization in brain functions has been recognized@12,13#.

Much of the theoretical analyses of phase synchroniza
have been carried out on systems consisting of two loc
coupled oscillators@6# or many globally coupled oscillator
@14#. Large one-dimensional chains of locally coupled ch
otic oscillators have been investigated very recently@15–17#.
Here, we address the question whether phase synchroniz
can persist in higher spatial dimensions where topolog
defects can play a central role. We show that the existenc
topological defects can lead to a breakdown of global ph
synchronization in two-dimensional arrays of nonidenti
chaotic oscillators. While most of the medium may rema
phase synchronized, oscillators close to moving topolog
defects have a different frequency. Despite this fact,
phase coherence of the system is higher than in syst
without topological defects. The transition to phase synch
nization via phase clustering observed in one-dimensio
systems@15,18# is not found in our simulations on two
dimensional systems; instead, a transition involving point
fects occurs.

Point topological defects in two-dimensionalhomoge-
neousoscillatory media are associated with the appeara
of spiral waves@19–21#. The phase fieldf(r ,t) of a medium
with a spiral wave contains a point topological phase de
in the spiral core such that
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2p R “f~r ,t !•dl56nt , ~1!

wherent is the topological charge of the defect@22#. A to-
pological defect corresponds to a point in the medium wh
the local amplitude is zero and the phase is not defined.
periodic boundary conditions, the net topological charge
the medium is zero. For identical chaotic oscillators@23#,
spatially coherent spiral dynamics can still exist implying
phase locking of the oscillations@24#.

To illustrate the phase synchronization properties in tw
dimensional networks of nonidentical chaotic oscillators,
consider anL3L array of locally coupled Ro¨ssler oscillators
with periodic boundary conditions@25#,

]x~r ,t !

]t
5R@x~r ,t !#1K (

r̂PN(r )
@x~ r̂ ,t !2x~r ,t !#, ~2!

where R152v(r )x22x3 , R25v(r )x110.2x2 , R35x1x3
25.9x310.2. The sites of the lattice are labeled byr , K is
the coupling constant, andN(r ) is the set of the four nex
nearest neighbors of siter . The phase angles of the oscilla
tors are given byf(r ,t)5arctan@x2(r ,t)/x1(r ,t)#. To obtain
the results presented below, we takeL564 and choose the
v(r )’s randomly from a uniform distribution in the interva
@0.95,1.05#, ensuring that the system is in the chaotic r
gime.

First, we considerK5K0[0.1. For different initial con-
ditions leading to stable patterns, basically two scenarios
be observed. For homogeneous initial conditions or ini
conditions with small inhomogeneities, no topological d
fects are created and the system evolves to a target pa
similar to the one in Fig. 1~left panel!. In the case of larger
inhomogeneities in the initial conditions, a number of top
logical defects withnt561 is created initially. Some pairs
of topological defects with opposite charge are quickly an
hilated until only a small number is left generating a spi
pattern similar to that in Fig. 1~middle panel!. The topologi-
cal defects are not necessarily stationary and for very l
times it is possible that all defects could disappear throu
further annihilation events; however, the motion of the s
viving topological defects is very slow compared to the in
tial annihilation processes and no further annihilation eve
©2002 The American Physical Society02-1
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FIG. 1. Snapshots of the phase field, all f
the same realization ofv(r ). From left to right:
K50.05 without topological defects,K50.05
with two surviving topological defects, andK
50.0419. In the latter case, topological defec
are generated dynamically in pairs such that t
number of topological defects fluctuates around
value of eight pairs.
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were observed on our long simulation time scale (104 – 105

spiral revolutions!. These two scenarios persist providedK is
not too small.

When there are no topological defects, the system is ph
synchronized. The occurrence of phase synchronization
coupled Ro¨ssler oscillators is usually attributed to the hig
degree of phase coherence of the attractor of asingleRössler
oscillator@1# although this might not be a sufficient conditio
@5#. Phase coherence means that@*2`

` dt^h(t)h(t1t)& t#
1/2

!v0, wheredf̃/dt5v01h(t), f̃ is the unbounded phase
and ^•••& t signifies an average overt. If h is d-correlated
Gaussian noise, this condition reduces tos!v0 and corre-
sponds to a very narrow peak of widths2 at v0 in the power
spectrum ofx1(t). However, generally, temporal correlation
in h exist. These correlations determine the speed of con
gence of the time averagev̄(T)5T21@f̃(T)2f̃(0)# to-
wardsv0. For the system of coupled Ro¨ssler oscillators con-
sidered here, the speed of convergence—as measured b
standard deviation of the ensemble distribution
v̄(T)—scales as 1/T as shown in Fig. 2. This is in contrast t
what one would expect if theh variables were independen
where one obtains 1/AT scaling since v̄(T)2v0

51/T*0
Tdth(t) and the standard deviation of*0

Tdth(t)
scales withAT. The observed variation withT is much
faster, implying an extremely high degree of phase coh
ence, even in the coupled system. The origin of this eff
resides in the shape of the local attractors. They
two banded with distinct frequenciesv1 and v2 such that

FIG. 2. Log-log plot of the standard deviationsv̄(T) of the

v̄(T) distribution in the phase synchronized state describing
speed of convergence towardsv0. The solid line with slope21 is
plotted to guide the eye. Note thatT052p/v0 depends slightly
on K.
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v05(v11v2)/2. Moreover, each deviation fromv1 is fol-
lowed by a deviation fromv2 of similar amplitude but with

opposite sign, and vice versa. Hence, the deviations ofv̄(T)
from v0 should be dominated by the switching between
bands for not too large values ofT. Thus, the maximal de-
viation fromv0 is given by the term (v12v2)/(2T), repro-
ducing the observed scaling. The two-banded structure

also be found in the ensemble distribution ofv̄(T). There,
two distinct peaks can be seen for certainT values consisten
with the fluctuations around the 1/T scaling in Fig. 2.

If topological defects are present, global phase synchro
zation is no longer guaranteed. Since a topological de
corresponds to a point in the system where a phase vari
cannot be defined, this implies that the concept of ph
synchronization can only be applied to parts of the syst
which exclude topological defects. Fordiscrete lattices of
oscillators considered here, this does not pose any probl
because the defect is located almost surelybetweenlattice
sites. Thus, the presence of topological defects does no
clude global phase synchronizationa priori. We indeed ob-
serve phase synchronization for quasistationary topolog
defects, which explains the occurrence of phase synchr
zation in the presence of topological defects described
Ref. @26#. However, the motion of topological defects d
stroys phase synchronization locally. As shown in Fig. 3,
motion of a topological defect leads to a distortion of near
local orbits. This in turn influences their local frequenci
such that the system is no longer phase synchronized as
be deduced from the correspondingv0 distribution in Fig. 4

e
FIG. 3. Trajectory ofx1(t) ~black! for a fixed oscillator and the

distanceDr (t) ~white! of this oscillator from the moving topologi-
cal defect forK50.06. The two temporal behaviors are correlate
demonstrating the influence of the topological defect’s motion
the local orbit.
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@27#. In particular, the ‘‘outliners’’ in this distribution are
located in the vicinity of the topological defect~s!.

For homogeneous oscillatory media, it is well known th
the time scales for the motions of topological defects dep
on the system parameters, ranging from very slow motion
rapid dynamics @28#. Inhomogeneity provides anothe
mechanism for defect motion and, in the present case
network of nonidentical Ro¨ssler oscillators, this is the dom
nant mechanism. For a network of identical Ro¨ssler oscilla-
tors, the topological defects are quasistationary on the t
scales considered here; thus, the observed breakup of g
phase synchronization for this system is due to the quenc
disorder in the network.

Although global phase synchronization is lost in the pr
ence of moving topological defects, the fluctuations of
instantaneous period in the medium are greatly reduc
While the phase coherence criterion,@*2`

` dt^h(t)h(t
1t)& t#

1/2!v0, is satisfied to a high degree of accuracy as
the case without topological defects, the average amplit
of the fluctuations in the instantaneous periodsT(r ,n)
52p/v(r ,n) as measured byS[^^S(r )& r&v with

S~r !5
^T~r ,n!&n

A^@T~r ,n!2^T~r ,n!&n#2&n

, ~3!

are significantly different. Here,T(r ,n) is the time needed
for the nth rotation at siter and ^•••&v is the average ove
all realizations ofv(r ). Figure 5~left panel! shows that the
value ofS is much larger above a certain couplingKc when
~more! topological defects are present in the system, co
sponding to a higher degree of coherence. An analysis
S(r ) shows that high values exist, especially in the vicin
of quasistationary topological defects~see right panel of Fig.
5!. This is due to the influence of topological defects on
shapes of the local orbits: they are close to periodic li
cycles. This is in accord with observations in Ref.@29# for

FIG. 4. The v0 histogram h(v0) of the oscillators forK
50.06 with two surviving topological defects in the system. O
defect moves causing the breakup of global phase synchroniza
The exact shape of the distribution depends on thev(r ) realization.
Negative and/or positive ‘‘ouliners’’ can exist and correspond
oscillators in the vicinity of the moving topological defect.
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identical oscillators although the ‘‘effective’’ spatial perio
doubling cascade found there is absent in the present ca

The system maintains memory of its initial conditio
aboveKc'0.043 leading to the different values ofS. For
single v(r ) realizations, different scenarios, with either n
defects or with defects present, can be observed forK0.K
.Kc @30#. For K below Kc , however, a qualitatively new
behavior occurs. Topological defects are now generated
annihilated continuously by the dynamics, which is respo
sible for the loss of memory of the initial condition. Th
number of topological defects fluctuates around a m
value which increases with decreasingK. This is expected
becauseK should control the characteristic length scale
the system. Moreover, the topological defects move on a
age much faster than aboveKc , similar to defect mediated
turbulence@31#. The creation and annihilation of topologica
defects as well as the fast motion lead to strong distortion
the local orbits affected by the moving defects . This mak
it impossible to define a proper phase variable for most of
oscillators in the network. Consequently, the concept
phase synchronization can no longer be applied.

In Refs. @15,18#, the transition to phase synchronizatio
via the route of phase clustering and merging of clusters
investigated for chains of oscillators. Liuet al. @15# con-
cluded that phase clustering should be more prevalent
full phase synchronization, especially in networks of coup
neurons. However, the two-dimensional system conside
here shows a different behavior for increasingK starting
from a value belowKc . We observe a transition from a stat
where topological defects are generated continuously by
dynamics to a partial phase synchronized state with mov
topological defects, similar to the case with surviving po
defects. This partial phase synchronized state is characte
by a large number of phase synchronized oscillators an
small number of oscillators close to the point defects w
mutually different frequencies. Thus, only one cluster w
more than one oscillator exists in contrast to the chain ge

n.

FIG. 5. Left: S as a function ofK for homogeneous~star! and
inhomogeneous~diamonds! initial conditions. The results were ob
tained from an average over five realizations of the randomv(r )
field. The phase coherence is higher when~more! topological de-
fects are present in the system forK.Kc'0.043. BelowKc point,
defects are created and annihilated dynamically. Right:S(r ) for the
samev(r ) realization as in Figs. 3 and 4. Dark areas correspon
high values ofS(r ). The locations of the defects are given by th
two arrows. The lower left defect is the moving defect.
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etry. The existence of topological defects in two dimensio
and higher dimensions suggests that the transition descr
here should be prevalent for general networks of chaotic
cillators.

We have shown that the occurrence of topological defe
in two-dimensional arrays of nonidentical chaotic oscillato
has a twofold effect: moving topological defects lead to
breakup of global phase synchronization, while all topolo
cal defects—especially quasistationary ones—increase
ce
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phase coherence of the system significantly. Since mov
and quasistationary topological defects are present in m
circumstances, the apparently contradictory scenario of
creased phase coherence but loss of global phase synch
zation occurs.
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